A Glimpse at Late Mesozoic to Early Tertiary Offshore Stratigraphy from Wilkes Land, East Antarctica: Results of Strategic Dredging of the Mertz-Ninnis Trough
Abstract
As early as 1912 Sir Douglas Mawson demonstrated that pre-glacial sedimentary successions could be recovered by seafloor dredging of erosional troughs found offshore, East Antarctica. Since then, little systematic dredging has been undertaken in Antarctica despite indications of outcropping strata exposed along seaward flanks of glacially excavated troughs and the dire need to resolve the nature of preglacial and synglacial strata in this region. During cruise NB Palmer 01-01, three dredges were collected in echelon along the seaward flank of the Mertz-Ninnis Trough, parallel to the Mertz Ice Tongue, in water depths of 900 to 450 m. We combine biostratigraphic (palynologic) and lithologic analyses on sedimentary clasts with multi- and single-channel seismic reflection data collected by the WEGA cruise in 2000. 1359 pebble to cobble sized clasts were collected from three dredges. Of these 15% to 43%, within each dredge, were of sedimentary character, including carbonaceous sandstones with plant macrofossils, black sulfide-rich mudstones, siltstones, lignites, red quartz arenites, arkoses, and diamictites in various states of lithification. Palynomorphs were separated from these sedimentary rocks. We examined eleven individual lithologies, nine of which yielded useful palynological detritus. Of these samples, five yielded palynomorphs distinctive to the Paleogene (i.e. Nothofagus flemingii, Tricolporites spp., Proteacidites spp.); two samples contained only Lower Cretaceous palynomorphs, while three samples provided no stratigraphically useful palynomorph kerogen. We combine these results with multi-channel seismic and multibeam swath mapping to demonstrate that dredged materials represent seafloor outcrop or shallow subcrop of strata beneath a thin glacial till. Our stratigraphic model for these samples is consistent with 62 km of multichannel seismic reflection data (WEGA line W02) showing seaward dipping strata onlapping the basement to the southwest and partly infilling a rifted basin of late Cretaceous age. Seaward dipping reflectors above the syn-rift strata represent post-rift deposits ranging from Paleogene to Quaternary. Included within this stratigraphy are lithified diamictites containing Mesozoic palynomorphs in addition to palynomorphs of Early Tertiary age (including dinoflagellates). Seaward dipping reflectors in the deep axis of the Mertz-Ninnis Trough were not sampled directly by our dredges, but are believed to be Lower Cretaceous siltstones by extrapolation to core DF-79-38, 100 km along strike to the southeast (Domack et al., 1980). Furthermore, the thermal maturity of the lignite samples recovered in our collections suggests that the coal is of Early Tertiary age, as are numerous organic-rich mudstones, which contain Paleogene palynomorphs. These results indicate that sedimentary strata in this portion of the Wilkes Land Margin contain significantly thick (greater than 2.7 km) post-rift (drift phase) marine sequences of both pre- and synglacial character. Strategic dredging is a promising methodology by which to sample stratigraphic succession in a cost effective manner along the East Antarctic margin in the absence of, or preparation for, International Ocean Drilling Projects on the shelf. Domack, E. W., Fairchild, W. W., and Anderson, J. B. (1980) Lower Cretaceous sediment from the East Antarctic continental shelf, Nature, 287, 625-626.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2004
- Bibcode:
- 2004AGUFMPP51E1359S
- Keywords:
-
- 4207 Arctic and Antarctic oceanography