Subglacial Volcanism in West-Antarctica - A Geologic and Ice Dynamical Perspective
Abstract
Subglacial volcanic eruptions may increase the contribution of the West-Antarctic Ice-Sheet (WAIS) to global sea-level rise in the near-future by enhancing basal melt water production and ice flow lubrication. Geophysical data have led scientists to believe that the ice sheet may be located over an extensive, young volcanic province containing ~1 million cubic kilometers of basalts (Behrendt, 1964; Behrendt et. al., 1991; 1995; 1998). While not all scientists may recognize this theory of widespread subglacial volcanism, so far no scientific paper has challenged its existence. Here we present the first geologic constraints on the presence/absence of widespread Late Cenozoic subglacial volcanism beneath the WAIS and investigate the potential influence of an individual subglacial volcano (Blankenship et. al., 1993) on the flow dynamic of WAIS. Properties of subglacial sediments indicate limited presence of subglacial volcanic rocks. Moreover, the only two basaltic pebbles, recovered from the region, are of Mesozoic-Paleozoic age (~100 to ~500 million years). While these findings reduce the potential for widespread near-future increases in ice discharge from WAIS due to eruptions of subglacial volcanoes, they do not rule out the presence of individual hot spots associated with volcanic centers beneath the WAIS. Fuel for the existence of a proposed volcano (Mt. Casertz) on the Whitmore Mountain Ross Sea Transitional Crust (WRT; Blankenship et. al., 1993), in the southern part of the WAIS, comes from thermo-dynamical modeling in comparison with observed ice velocities. Ice velocities (Joughin et. al., 1999; 2002) downstream of Mt. Casertz indicate significant basal sliding, where thermo-dynamical models suggest that the ice sheet is frozen to its base. Routing of basal melt water, produced in the vicinity of Mt. Casertz, may lubricate the ice base in parts of the WRT, thus enabling basal sliding and enhancing the discharge of ice in this sector of the WAIS. The only means to resolve any further questions on the existence of subglacial volcanism in West-Antarctica and its potential impact on the dynamic of the ice sheet, requires drilling into potential volcanic centers and the recovery of volcanic rocks for dating and geochemical analysis.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2004
- Bibcode:
- 2004AGUFM.C33D..02V
- Keywords:
-
- 9310 Antarctica;
- 8107 Continental neotectonics;
- 7218 Lithosphere and upper mantle;
- 1836 Hydrologic budget (1655);
- 1863 Snow and ice (1827)