On Higher Frobenius-Schur Indicators
Abstract
We study the higher Frobenius-Schur indicators of modules over semisimple Hopf algebras, and relate them to other invariants as the exponent, the order, and the index. We prove various divisibility and integrality results for these invariants. In particular, we prove a version of Cauchy's theorem for semisimple Hopf algebras. Furthermore, we give some examples that illustrate the general theory.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- November 2003
- DOI:
- arXiv:
- arXiv:math/0311199
- Bibcode:
- 2003math.....11199K
- Keywords:
-
- Mathematics - Rings and Algebras;
- Mathematics - Quantum Algebra;
- Mathematics - Representation Theory;
- 16W30
- E-Print:
- 62 pages. Important new result added, remark by P. Etingof included, mistake in last section corrected. See also http://www.mathematik.uni-muenchen.de/~sommerh