J-holomorphic Disks and Lagrangian Squeezing
Abstract
We define an invariant $l(M,W,\omega)$ for Lagrangian submanifold and prove that if the Lagrangian submanifold is embedded in the ball of radius $r_0$, then $l(M,W,\Omega)$ must be smaller than $4\pi t_0^2$. This improves Gromov's Lagrangian embedding theorem.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- September 2003
- DOI:
- arXiv:
- arXiv:math/0309205
- Bibcode:
- 2003math......9205M
- Keywords:
-
- Symplectic Geometry;
- Dynamical Systems