Optical interferometry in astronomy
Abstract
Here I review the current state of the field of optical stellar interferometry, concentrating on ground-based work although a brief report of space interferometry missions is included. We pause both to reflect on decades of immense progress in the field as well as to prepare for a new generation of large interferometers just now being commissioned (most notably, the CHARA, Keck and VLT Interferometers). First, this review summarizes the basic principles behind stellar interferometry needed by the lay-physicist and general astronomer to understand the scientific potential as well as technical challenges of interferometry. Next, the basic design principles of practical interferometers are discussed, using the experience of past and existing facilities to illustrate important points. Here there is significant discussion of current trends in the field, including the new facilities under construction and advanced technologies being debuted. This decade has seen the influence of stellar interferometry extend beyond classical regimes of stellar diameters and binary orbits to new areas such as mapping the accretion discs around young stars, novel calibration of the cepheid period-luminosity relation, and imaging of stellar surfaces. The third section is devoted to the major scientific results from interferometry, grouped into natural categories reflecting these current developments. Lastly, I consider the future of interferometry, highlighting the kinds of new science promised by the interferometers coming on-line in the next few years. I also discuss the longer-term future of optical interferometry, including the prospects for space interferometry and the possibilities of large-scale ground-based projects. Critical technological developments are still needed to make these projects attractive and affordable.
- Publication:
-
Reports on Progress in Physics
- Pub Date:
- May 2003
- DOI:
- 10.1088/0034-4885/66/5/203
- arXiv:
- arXiv:astro-ph/0307036
- Bibcode:
- 2003RPPh...66..789M
- Keywords:
-
- Astrophysics
- E-Print:
- Long Review Article. 86 pages. 31 figures. Arxiv submission size restrictions necessitated heavy compression of figures. Higher quality figures at http://www.astro.lsa.umich.edu/~monnier/Research.html (See http://www.iop.org for final manuscript and copyright notice)