Local structural change in zircon following radiation damage accumulation. Observation by 29Si nuclear magnetic resonance
Abstract
29Si nuclear magnetic resonance (NMR) is a one of the most useful probes of the local structure of silicates. One of the results of recent studies of naturally radiation damaged zircons is that there is an evolution of the local structure in both crystalline and amorphous fractions of partially metamict zircon as a function of accumulated α-dose. We have examined the evolution of this local structure within the framework of several models of damage accumulation. The total number of displaced atoms produced per α-decay as function of accumulated dose, as measured by NMR, is not consistent with the idea of multiple overlap events being responsible for the evolution of the total damaged fraction. However, increased connectivity in the damaged region as the number of α-events increases is correlated to the degree of cascade overlap. The results of large scale atomistic (MD) simulations of heavy nuclei recoils at realistic energies (70keV) are consistent with the NMR quantification and also with TEM estimates of the diameters of damaged regions. The local heterogeneity (density and bonding) in the damaged area in the simulations is consistent with the existence of connected silicate tetrahedra. Detailed experiments on the annealing of damaged zircons at 500 and 600^oC have been performed. These show that a significant energetic barrier to the recrystallisation exists at these temperatures once a small fraction of damaged material has been recrystallised. This correlates well with the degree of cascade overlap. Indicating that the more connected SiO_4 tetrahedra present this barrier. A sample with very little cascade overlap can be annealed to ∼97% crystallinity at these temperatures.
- Publication:
-
EGS - AGU - EUG Joint Assembly
- Pub Date:
- April 2003
- Bibcode:
- 2003EAEJA.....9519F