Acquiring Research-grade ALSM Data in the Commercial Marketplace
Abstract
The Puget Sound Lidar Consortium, working with TerraPoint, LLC, has procured a large volume of ALSM (topographic lidar) data for scientific research. Research-grade ALSM data can be characterized by their completeness, density, and accuracy. Complete data include-at a minimum-X, Y, Z, time, and classification (ground, vegetation, structure, blunder) for each laser reflection. Off-nadir angle and return number for multiple returns are also useful. We began with a pulse density of 1/sq m, and after limited experiments still find this density satisfactory in the dense second-growth forests of western Washington. Lower pulse densities would have produced unacceptably limited sampling in forested areas and aliased some topographic features. Higher pulse densities do not produce markedly better topographic models, in part because of limitations of reproducibility between the overlapping survey swaths used to achieve higher density. Our experience in a variety of forest types demonstrates that the fraction of pulses that produce ground returns varies with vegetation cover, laser beam divergence, laser power, and detector sensitivity, but have not quantified this relationship. The most significant operational limits on vertical accuracy of ALSM appear to be instrument calibration and the accuracy with which returns are classified as ground or vegetation. TerraPoint has recently implemented in-situ calibration using overlapping swaths (Latypov and Zosse, 2002, see http://www.terrapoint.com/News_damirACSM_ASPRS2002.html). On the consumer side, we routinely perform a similar overlap analysis to produce maps of relative Z error between swaths; we find that in bare, low-slope regions the in-situ calibration has reduced this internal Z error to 6-10 cm RMSE. Comparison with independent ground control points commonly illuminates inconsistencies in how GPS heights have been reduced to orthometric heights. Once these inconsistencies are resolved, it appears that the internal errors are the bulk of the error of the survey. The error maps suggest that with in-situ calibration, minor time-varying errors with a period of circa 1 sec are the largest remaining source of survey error. For forested terrain, limited ground penetration and errors in return classification can severely limit the accuracy of resulting topographic models. Initial work by Haugerud and Harding demonstrated the feasibility of fully-automatic return classification; however, TerraPoint has found that better results can be obtained more effectively with 3rd-party classification software that allows a mix of automated routines and human intervention. Our relationship has been evolving since early 2000. Important aspects of this relationship include close communication between data producer and consumer, a willingness to learn from each other, significant technical expertise and resources on the consumer side, and continued refinement of achievable, quantitative performance and accuracy specifications. Most recently we have instituted a slope-dependent Z accuracy specification that TerraPoint first developed as a heuristic for surveying mountainous terrain in Switzerland. We are now working on quantifying the internal consistency of topographic models in forested areas, using a variant of overlap analysis, and standards for the spatial distribution of internal errors.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2003
- Bibcode:
- 2003AGUFM.G11A0247H
- Keywords:
-
- 1224 Photogrammetry;
- 1824 Geomorphology (1625);
- 9820 Techniques applicable in three or more fields