Nondestructive evaluation of compacted clayey soils
Abstract
Compacted clayey soils are analyzed using nondestructive testing methods. Ultrasonic testing and image analysis are used as nondestructive testing techniques. Tests were conducted on three clayey soils with low to high plasticities. The soils are compacted and then allowed to dry or subjected to wetting and drying cycles subsequent to compaction. Ultrasonic tests are performed to determine small strain elastic properties of soils during drying. Image analysis techniques are used to determine large strains and cracking behavior of soils during wetting and drying cycles. Finally, numerical methods are used to simulate large and small strain soil behavior. Ultrasonic testing can be used effectively to determine compaction characteristics of soils. Through transmission can be applicable in the laboratory or on recovered field samples while surface transmission can be used in the field. Variation of P-wave velocity is similar to variation of dry density for the test soils. Increasing compactive effort cause increases in measured wave velocity. Variations of elastic parameters during drying are investigated. More variation was observed for soils compacted with low compaction effort and high water contents. Five elastic parameters of cross-anisotropy are calculated from wave velocity measurements on cubical samples with oblique cuts. Constrained, Young's, and shear moduli increase, while Poisson's ratios decrease during drying. Starting with isotropy assumption, empirical formulas are used to calculate the shear moduli and results are compared with experimental shear modulus values obtained using the theory of elasticity. A new formulation is developed to compute shear modulus variation with saturation. Behavior of compacted clayey soils during wetting and drying was also investigated. High plasticity-fine grained soils tend to shrink and crack more during drying. Cracks of these soils tend to heal and close during wetting cycles. Cracking and healing are less for medium and low plasticity soils. Cracking is observed at relatively low suction levels for all soil types. Cracking is quantified using image analysis techniques. Finite element models are successfully used to make predictions on small strainwave propagation and fracture potential of soils. Transducer size has significant effect on surface arrangement arrival times and water content profile has significant effect on fracture potential.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 2001
- Bibcode:
- 2001PhDT........31I