On resistive magnetohydrodynamic equilibria of an axisymmetric toroidal plasma with flow
Abstract
It is shown that the magnetohydrodynamic equilibrium states of an axisymmetric toroidal plasma with finite resistivity and flows parallel to the magnetic field are governed by a second-order partial differential equation for the poloidal magnetic flux function $\psi$ coupled with a Bernoulli type equation for the plasma density (which are identical in form to the corresponding ideal MHD equilibrium equations) along with the relation $\Delta^\star \psi=V_c \sigma$. (Here, $\Delta^\star$ is the Grad-Schlüter-Shafranov operator, $\sigma$ is the conductivity and $V_c$ is the constant toroidal-loop voltage divided by $2 \pi $). In particular, for incompressible flows the above mentioned partial differential equation becomes elliptic and decouples from the Bernoulli equation [H. Tasso and G. N. Throumoulopoulos, Phys. Plasmas {\bf 5}, 2378 (1998)]. For a conductivity of the form $\sigma=\sigma(R, \psi)$ ($R$ is the distance from the axis of symmetry) several classes of analytic equilibria with incompressible flows can be constructed having qualitatively plausible $\sigma$ profiles, i.e. profiles with $\sigma$ taking a maximum value close to the magnetic axis and a minimum value on the plasma surface. For $\sigma=\sigma(\psi)$ consideration of the relation $\Delta^\star\psi = V_c \sigma(\psi)$ in the vicinity of the magnetic axis leads therein to a proof of the non-existence of either compressible or incompressible equilibria. This result can be extended to the more general case of non-parallel flows lying within the magnetic surfaces.
- Publication:
-
Journal of Plasma Physics
- Pub Date:
- November 2000
- DOI:
- arXiv:
- arXiv:physics/0009081
- Bibcode:
- 2000JPlPh..64..601T
- Keywords:
-
- Physics - Plasma Physics
- E-Print:
- Post script file, 17 pages, no figures, to be published in J. Plasma Physics