Modified Affine Hecke Algebras and Drinfeldians of Type A
Abstract
We introduce a modified affine Hecke algebra $\h{H}^{+}_{q\eta}({l})$ ($\h{H}_{q\eta}({l})$) which depends on two deformation parameters $q$ and $\eta$. When the parameter $\eta$ is equal to zero the algebra $\h{H}_{q\eta=0}(l)$ coincides with the usual affine Hecke algebra $\h{H}_{q}(l)$ of type $A_{l-1}$, if the parameter q goes to 1 the algebra $\h{H}^{+}_{q=1\eta}(l)$ is isomorphic to the degenerate affine Hecke algebra $\Lm_{\eta}(l)$ introduced by Drinfeld. We construct a functor from a category of representations of $H_{q\eta}^{+}(l)$ into a category of representations of Drinfeldian $D_{q\eta}(sl(n+1))$ which has been introduced by the first author.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- December 1999
- DOI:
- arXiv:
- arXiv:math/9912063
- Bibcode:
- 1999math.....12063T
- Keywords:
-
- Mathematics - Quantum Algebra;
- Mathematical Physics;
- Mathematics - Mathematical Physics;
- Mathematics - Representation Theory;
- 81R10;
- 17B37;
- 16W30
- E-Print:
- 11 pages, LATEX. Contribution to Proceedings "Quantum Theory and Symmetries" (Goslar, July 18-22, 1999) (World Scientific, 2000)