Electron, Proton, and Alpha Monitor on the Advanced Composition Explorer spacecraft
Abstract
The Electron, Proton, and Alpha Monitor (EPAM) is designed to make measurements of ions and electrons over a broad range of energy and intensity. Through five separate solid-state detector telescopes oriented so as to provide nearly full coverage of the unit-sphere, EPAM can uniquely distinguish ions (Ei≳50 keV) and electrons (Ee≳40 keV) providing the context for the measurements of the high sensitivity instruments on ACE. Using a ΔE×E telescope, the instrument can determine ion elemental abundances (E≳0.5 MeV nucl-1). The large angular coverage and high time resolution will serve to alert the other instruments on ACE of interesting anisotropic events. The experiment is controlled by a microprocessor-based data system, and the entire instrument has been reconfigured from the HI-SCALE instrument on the Ulysses spacecraft. Inflight calibration is achieved using a variety of radioactive sources mounted on the reclosable telescope covers. Besides the coarse (8 channel) ion and (4 channel) electron energy spectra, the instrument is also capable of providing energy spectra with 32 logarithmically spaced channels using a pulse-height-analyzer. The instrument, along with its mounting bracket and radiators weighs 11.8 kg and uses about 4.0 W of power. To demonstrate some of the capabilities of the instrument, some initial performance data are included from a solar energetic particle event in November 1997.
- Publication:
-
Space Science Reviews
- Pub Date:
- July 1998
- DOI:
- Bibcode:
- 1998SSRv...86..541G