Solutions of Discretized Affine Toda Field Equations for A n (1), B n (1), C n (1), D n (1), A n (2) and D n+1 (2)
Abstract
It is known that a family oftransfer matrix functional equations, the T-system, can be compactly written in terms of the Cartan matrix ofa simple Lie algebra.We formally replace this Cartan matrix of a simple Lie algebra with that of an affine Lie algebra, and then we obtain a system of functional equations different from the T-system.It may be viewed as an Xn(a) type affine Toda field equation on discrete space time. We present, for An(1), Bn(1), Cn(1), Dn(1), An(2) and Dn+1(2),its solutions in terms of determinants or Pfaffians.
- Publication:
-
Journal of the Physical Society of Japan
- Pub Date:
- November 1997
- DOI:
- 10.1143/JPSJ.66.3391
- arXiv:
- arXiv:solv-int/9610011
- Bibcode:
- 1997JPSJ...66.3391T
- Keywords:
-
- Nonlinear Sciences - Exactly Solvable and Integrable Systems;
- High Energy Physics - Theory
- E-Print:
- 22 pages, no figure, LaTeX: Introduction, Summary and Discussion are revised. (e-mail: ss57058@hongo.ecc.u-tokyo.ac.jp)