Non-destructive diagnosis of relativistic electron beams using a short undulator
Abstract
The performance of an FEL depends critically on the characteristics of the electron beam used to drive it. In the past it has been very difficult to measure the details of the transverse and longitudinal phase-space distributions of high-energy electron beams with the precision required to predict FEL performance. Furthermore, the available diagnostics were generally perturbative, and could not be used simultaneously with lasing. We investigate the potential use of a short undulator insertion device for non-destructive diagnosis of relativistic electron beams. Incoherent visible to near-infrared synchrotron radiation from a single magnet in the diagnostic undulator will be used to obtain information on beam position and transverse phase-space. Coherent off-axis undulator radiation in the millimeter to sub-millimeter range will be used to measure longitudinal phase-space characteristics of the beam. These two types of radiation can be analyzed simultaneously, while the FEL is lasing; thus giving a complete picture of relevant electron beam characteristics. In this paper we analyze the theoretical and practical design issues associated with such a diagnostic undulator.
- Publication:
-
Nuclear Instruments and Methods in Physics Research A
- Pub Date:
- February 1996
- DOI:
- Bibcode:
- 1996NIMPA.375..136P