On Gravity's role in Quantum State Reduction
Abstract
The stability of a quantum superposition of two different stationary mass distributions is examined, where the perturbing effect of each distribution on the space-time structure is taken into account, in accordance with the principles of general relativity. It is argued that the definition of the time-translation operator for the superposed space-times involves an inherent ill-definedness, leading to an essential uncertainty in the energy of the superposed state which, in the Newtonian limit, is proportional to the gravitational self-energyE Δ of the difference between the two mass distributions. This is consistent with a suggested finite lifetime of the order of ħ/E Δ for the superposed state, in agreement with a certain proposal made by the author for a gravitationally induced spontaneous quantum state reduction, and with closely related earlier suggestions by Diósi and by Ghirardiet al.
- Publication:
-
General Relativity and Gravitation
- Pub Date:
- May 1996
- DOI:
- 10.1007/BF02105068
- Bibcode:
- 1996GReGr..28..581P