Structural and Electrical Properties of Ta2O5 Grown by the Plasma-Enhanced Liquid Source CVD Using Penta Ethoxy Tantalum Source
Abstract
We report on structural and electrical properties of tantalum penta oxide (Ta2O5) material with a high dielectric constant grown from a penta ethoxy tantalum [Ta(OC2H5)5] liquid source by the plasma-enhanced liquid source chemical vapor deposition (PE-LS-CVD) technique. We have investigated several basic plasma deposition conditions. Structural properties investigated by θ-2θ X-ray measurements showed the amorphous nature of the films, and Auger electron spectrosopy (AES) and secondary ion mass spectroscopy (SIMS) indicated growth of Ta2O5 films having proper stoichiometry (Ta/O=0.4). Optical transmission spectroscopy showed that the band gap (Eg) of Ta2O5 is 5.28 eV. Electrical measurements performed on Au/Ta2O5/n, p-Si metal oxide semiconductor (MOS) structure exhibited very well defined capacitance-voltage (C-V) characteristics with flat band voltage as low as -0.1 eV, low leakage current, high breakdown voltage and high dielectric constant (25-38). As a hitherto unreported step in Ta2O5 processing we also performed rapid thermal (RTA) annealing at 700°C and 900°C for 5 min which resulted in much improved electrical properties. All results suggest growth of high-quality Ta2O5 films from a carbon-based Ta liquid source, due to an effect of plasma-enhanced deposition process.
- Publication:
-
Japanese Journal of Applied Physics
- Pub Date:
- January 1993
- DOI:
- 10.1143/JJAP.32.368
- Bibcode:
- 1993JaJAP..32..368M