Mutational and nucleotide sequence analysis of S-adenosyl-L-homocysteine hydrolase from Rhodobacter capsulatus.
Abstract
The genetic locus ahcY, encoding the enzyme S-adenosyl-L-homocysteine hydrolase (EC 3.3.1.1) from the bacterium Rhodobacter capsulatus, has been mapped by mutational analysis to within a cluster of genes involved in regulating the induction and maintenance of the bacterial photosynthetic apparatus. Sequence analysis demonstrates that ahcY encodes a 51-kDa polypeptide that displays 64% sequence identity to its human homolog. Insertion mutants in ahcY lack detectable S-adenosyl-L-homocysteine hydrolase activity and, as a consequence, S-adenosyl-L-homocysteine accumulates in the cells, resulting in a 16-fold decrease in the intracellular ratio of S-adenosyl-L-methionine to S-adenosyl-L-homocysteine as compared to wild-type cells. The ahcY disrupted strain fails to grow in minimal medium; however, growth is restored in minimal medium supplemented with methionine or homocysteine or in a complex medium, thereby indicating that the hydrolysis of S-adenosyl-L-homocysteine plays a key role in the metabolism of sulfur-containing amino acids. The ahcY mutant, when grown in supplemented medium, synthesizes significantly reduced levels of bacteriochlorophyll, indicating that modulation of the intracellular ratio of S-adenosyl-L-methionine to S-adenosyl-L-homocysteine may be an important factor in regulating bacteriochlorophyll biosynthesis.
- Publication:
-
Proceedings of the National Academy of Science
- Pub Date:
- July 1992
- DOI:
- 10.1073/pnas.89.14.6328
- Bibcode:
- 1992PNAS...89.6328S