The role of inhibitors during electrodeposition of thin metallic films
Abstract
The role of brightening agents during the deposition of thin metal films was analyzed. The model brightening system studied was copper deposition in the presence of benzotriazole (BTA). Emphasis was placed on the early stages of deposition. The development of microtopography was characterized with in situ scanning tunneling microscopy. Cuprous-BTA film formation was measured with impedance spectroscopy. Copper electrochemistry was measured with double-pulse potentiometry. The incorporation of BTA, including the effects of mass transport conditions, was studied with x ray photoelectron spectroscopy and secondary ion mass spectroscopy. A visual survey of deposits from 0.5 M CuSO4, 0.5 M H2SO4 indicated that brightening occurs when the concentration of BTA is greater than 100 microM and the current density is greater than 50 mA/sq cm. A passive layer was found to form during cathodic polarization of copper in 0.5 M CuSO4, 0.5 M H2SO4 with 100 and 200 microM BTA. Followingbreakdown of the passive layer, with increased polarization, the copper remains covered with a BTA film with a coverage following Langmuir adsorption kinetics. Benzotriazole was not incorporated into the copper deposits. The nucleation site density of Cu on Pt was only a function of overpotential irrespective of the BTA concentration. The presence of BTA increases the overpotential (resulting in an increase in nucleation rate) for a given current density which results in a decreased particle size. Benzotriazole altered the morphology of the deposited Cu. Deposits from BTA free electrolyte consisted of flat planes terminated with ledges with growth occurring at the ledges. Deposits from BTA containing electrolyte consisted of hemispheres with growth occurring uniformly on the surface.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- May 1990
- Bibcode:
- 1990PhDT........14A
- Keywords:
-
- Copper;
- Electrodeposition;
- Inhibitors;
- Metal Films;
- Thin Films;
- Electron Spectroscopy;
- Nucleation;
- Plating;
- Solid-State Physics