Repetitive DNA and Chromosome Evolution in Plants
Abstract
Most higher plant genomes contain a high proportion of repeated sequences. Thus repetitive DNA is a major contributor to plant chromosome structure. The variation in total DNA content between species is due mostly to variation in repeated DNA content. Some repeats of the same family are arranged in tandem arrays, at the sites of heterochromatin. Examples from the Secale genus are described. Arrays of the same sequence are often present at many chromosomal sites. Heterochromatin often contains arrays of several unrelated sequences. The evolution of such arrays in populations is discussed. Other repeats are dispersed at many locations in the chromosomes. Many are likely to be or have evolved from transposable elements. The structures of some plant transposable elements, in particular the sequences of the terminal inverted repeats, are described. Some elements in soybean, antirrhinum and maize have the same inverted terminal repeat sequences. Other elements of maize and wheat share terminal homology with elements from yeast, Drosophila, man and mouse. The evolution of transposable elements in plant populations is discussed. The amplification, deletion and transposition of different repeated DNA sequences and the spread of the mutations in populations produces a turnover of repetitive DNA during evolution. This turnover process and the molecular mechanisms involved are discussed and shown to be responsible for divergence of chromosome structure between species. Turnover of repeated genes also occurs. The molecular processes affecting repeats imply that the older a repetitive DNA family the more likely it is to exist in different forms and in many locations within a species. Examples to support this hypothesis are provided from the Secale genus.
- Publication:
-
Philosophical Transactions of the Royal Society of London Series B
- Pub Date:
- January 1986
- DOI:
- Bibcode:
- 1986RSPTB.312..227F