Three-Dimensional Topological Insulators
Abstract
Topological insulators in three dimensions are nonmagnetic insulators that possess metallic surface states (SSs) as a consequence of the nontrivial topology of electronic wavefunctions in the bulk of the material. They are the first known examples of topological order in bulk solids. We review the basic phenomena and experimental history, starting with the observation of topological insulator behavior in BixSb1-x by angle and spin-resolved photoemission spectroscopy (spin-ARPES) and continuing through measurements on other materials and by other probes. A self-contained introduction to the single-particle theory is then given, followed by the many-particle definition of a topological insulator as a material with quantized magnetoelectric polarizability. The last section reviews recent work on strongly correlated topological insulators and new effects that arise from the proximity effect between a topological insulator and a superconductor. Although this article is not intended to be a comprehensive review of what is already a rather large field, we hope that it serves as a useful introduction, summary of recent progress, and guideline to future directions.
- Publication:
-
Annual Review of Condensed Matter Physics
- Pub Date:
- March 2011
- DOI:
- arXiv:
- arXiv:1011.5462
- Bibcode:
- 2011ARCMP...2...55H
- Keywords:
-
- Condensed Matter - Strongly Correlated Electrons
- E-Print:
- 53 pages, 9 figures, 1 table. Preprint version from June 2010 of invited article for Annual Review of Condensed Matter Physics. Final edited version will be published online c. January 2011