Relative Leray numbers via spectral sequences
Abstract
Let $\mathbb{F}$ be a fixed field and let $X$ be a simplicial complex on the vertex set $V$. The Leray number $L(X;\mathbb{F})$ is the minimal $d$ such that for all $i \geq d$ and $S \subset V$, the induced complex $X[S]$ satisfies $\tilde{H}_i(X[S];\mathbb{F})=0$. Leray numbers play a role in formulating and proving topological Helly type theorems. For two complexes $X,Y$ on the same vertex set $V$, define the relative Leray number $L_Y(X;\mathbb{F})$ as the minimal $d$ such that $\tilde{H}_i(X[V \setminus \sigma];\mathbb{F})=0$ for all $i \geq d$ and $\sigma \in Y$. In this paper we extend the topological colorful Helly theorem to the relative setting. Our main tool is a spectral sequence for the intersection of complexes indexed by a geometric lattice.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2020
- DOI:
- 10.48550/arXiv.2002.06630
- arXiv:
- arXiv:2002.06630
- Bibcode:
- 2020arXiv200206630K
- Keywords:
-
- Mathematics - Combinatorics;
- 05E45 (primary) 55U10 (Secondary)
- E-Print:
- 7 pages