Sobolev homeomorphic extensions
Abstract
Let $\mathbb X$ and $\mathbb Y$ be $\ell$-connected Jordan domains, $\ell \in \mathbb N$, with rectifiable boundaries in the complex plane. We prove that any boundary homeomorphism $\varphi \colon \partial \mathbb X \to \partial \mathbb Y$ admits a Sobolev homeomorphic extension $h \colon \overline{\mathbb X} \to \overline{\mathbb Y}$ in $W^{1,1} (\mathbb X, \mathbb C)$. If instead $\mathbb X$ has $s$-hyperbolic growth with $s>p-1$, we show the existence of such an extension lies in the Sobolev class $W^{1,p} (\mathbb X, \mathbb C)$ for $p\in (1,2)$. Our examples show that the assumptions of rectifiable boundary and hyperbolic growth cannot be relaxed. We also consider the existence of $W^{1,2}$-homeomorphic extensions subject to a given boundary data.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2018
- DOI:
- 10.48550/arXiv.1812.02085
- arXiv:
- arXiv:1812.02085
- Bibcode:
- 2018arXiv181202085K
- Keywords:
-
- Mathematics - Complex Variables
- E-Print:
- 25 pages, 5 figures