Taeduk Radio Astronomy Observatory and Key Science Programs
Abstract
Taeduk Radio Astronomy Observatory (TRAO) is now equipped with a new main control computer with VxWorks operating system, a new receiver system, and a new backend system. The receiver system(SEQUOIA-TRAO) is equipped with high-performing 16-pixel MMIC pre-amplifiers in a 4x4 array, operating within 85~115 GHz frequency range. The system temperature ranges from 150 K(85 GHz) to 400 K(115 GHz). The 2nd IF modules with the narrow band and the 8 channels with 4 FFT spectrometers allow to observe 2 frequencies simultaneously within the 85~100 or 100~115 GHz bands for all 16 pixels. Radome replacement was completed successfully in February 2017. In addition, a new servo system was installed in 2017 autumn season, providing faster and more stable tracking mode of the telescope. Thus we can save telescope time at least 10%. We are providing OTF(On-The-Fly) as a main observing mode, and position switching mode is available as well. The backend system(FFT spectrometer) provides the 4096x2 channels with fine velocity resolution of about 0.05 km/sec(15 kHz) per channel, and their full spectra bandwidth is 60 MHz. Beam efficiency of the TRAO was measured to be about 46% - 54% (with less than 2% error) between 85 and 115 GHz frequency range. The pointing errors of the 14m telescope were found be 4.4 arcsec in AZ direction and 6 arcsec in EL direction. Generally, we allocate 18 hours of telescope time a day from January to the middle of May, and from October to December. Three Key Science Programs had been selected in 2015 fall and they are supposed to have higher priority for telescope time, up to 50%. General proposals from enthusiastic mm-wave astronomers from any country are encouraged.
- Publication:
-
American Astronomical Society Meeting Abstracts #232
- Pub Date:
- June 2018
- Bibcode:
- 2018AAS...23212505L