Gas temperature determination of non-thermal atmospheric plasmas from the collisional broadening of argon atomic emission lines
Abstract
In this work we propose a new method allowing gas temperature determination in argon non-thermal plasma jets, based on the measurement of the collisional broadening of different argon atomic lines corresponding to transitions into both resonance levels s2 and s4 of the 3p54s configuration. The method was developed for fourteen lines: Ar I 978.45, 935.42, 922.45, 852.14, 840.82, 826.45, 750.39 (corresponding to transitions falling to level s2) and 965.77, 842.46, 810.37, 800.62, 751.46, 738.40, 727.29 nm (corresponding to transitions falling to level s4). A carefully study of the relative importance of all broadening mechanisms to the whole profile for these lines, under a broad range of experimental conditions, revealed that for electron densities and gas temperature lower than 1015 cm-3 and 2000 K, the Stark and Doppler broadenings can be neglected in the method, but the van der Waals contribution should not be ever discarded for gas temperature determination. The gas temperature of a microwave non-thermal plasma jet was determined using nine of these lines. Results were consistent with each other, and with those obtained from the rotational temperature derived from OH ro-vibrational band. Also, the influence of the air entrance on the collisional broadening of the lines has been studied and the way the method should be modified to include this effect is indicated.
- Publication:
-
Journal of Quantitative Spectroscopy and Radiative Transfer
- Pub Date:
- September 2017
- DOI:
- Bibcode:
- 2017JQSRT.198...93R
- Keywords:
-
- Plasma spectroscopy;
- Non-thermal plasmas;
- Gas temperature;
- Collisional broadening;
- Atomic emission spectroscopy