Adolescent Black Holes May be Hard to Find
Abstract
Finding adolescent black holes that are growing rapidly from their seed masses is a major goal of the next generation of large observatories. We have examined how these early quasars may appear in terms of their broad emission lines (BELs) in the optical and ultraviolet. We find that below 10**6 Msol, the equivalent widths of the BELs drop precipitously. Moreover, if the BELs originate in clouds that form as the cool phase of a multi-phase medium, then for metallicities Z/Zsol ~< 3, the thermal instabilities that create them will not exist. However, in observed quasars at high redshift Z/Zsol is >> 3, so quasars are preferentially found in special environments, perhaps with deep potential wells. The population that we see though could be biased by the Z/Zsol > 3 requirement. A stronger argument is that the thermal instability leading to cool clouds is predominantly due to line emission by iron. Iron comes primarily from type 1a supernovae, which take of order 1 billion years to ignite. Hence iron should be under-abundant relative to other elements until z ~ 6 - 7. That the highest redshift quasar is at z = 7.1 may be a consequence of this requirement. Quasars above z ~ 7 could still be found by their rest-frame ultraviolet or X-ray continuum.
- Publication:
-
AAS/High Energy Astrophysics Division #16
- Pub Date:
- August 2017
- Bibcode:
- 2017HEAD...1610903E