Exploring the Dominant Modes of Shoreline Change Along the Central Florida Atlantic Coast
Abstract
Geomorphic change within the littoral zone can place communities, ecosystems, and critical infrastructure at risk as the coastal environment responds to changes in sea level, sediment supply, and wave climate. At NASA's Kennedy Space Center near Cape Canaveral, Florida, chronic shoreline retreat currently threatens critical launch infrastructure, but the spatial (alongshore) pattern of this hazard has not been well documented. During a 5-year monitoring campaign (2009-2014), 86 monthly and rapid-response RTK GPS surveys were completed along this 11 km-long coastal reach in order to monitor and characterize shoreline change and identify links between ocean forcing and beach morphology. Results indicate that the study area can be divided into four behaviorally-distinct alongshore regions based on seasonal variability in shoreline change, mediated by the complex offshore bathymetry of the Cape Canaveral shoals. In addition, seasonal erosion/accretion cycles are regularly interrupted by large erosive storm events, especially during the anomalous wave climates produced during winter Nor'Easter storms. An effective tool for analyzing multidimensional datasets like this one is Empirical Orthogonal Function (EOF) analysis, a technique to determine the dominant spatial and temporal signals within a dataset. Using this approach, it is possible to identify the main time and space scales (modes) along which coastal changes are occurring. Through correlation of these changes with oceanographic forcing mechanisms, we are enabled to infer the principal drivers of shoreline change at this site. Here, we document the results of EOF analysis applied to the Cape Canaveral shoreline change dataset, and further correlate the results of this analysis with oceanographic forcings in order to reveal the dominant modes as well as drivers of coastal variability along the central Atlantic coast of Florida. This EOF-based analysis, which is the first such analysis in the region, is shedding light on the hazards that most affect Florida's coastal communities and the scales at which coastal planners and stakeholders should focus protection efforts.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMGC23B1047C
- Keywords:
-
- 1615 Biogeochemical cycles;
- processes;
- and modeling;
- GLOBAL CHANGE;
- 1824 Geomorphology: general;
- HYDROLOGY;
- 1895 Instruments and techniques: monitoring;
- HYDROLOGY;
- 4217 Coastal processes;
- OCEANOGRAPHY: GENERAL