The complete set of Cassini's UVIS occultation observations of Enceladus plume: model fits
Abstract
Since the discovery in 2005, plume of Enceladus was observed by most of the instruments onboard Cassini spacecraft. Ultraviolet Imaging Spectrograph (UVIS) have observed Enceladus plume and collimated jets embedded in it in occultational geometry on 6 different occasions. We have constructed a 3D direct simulation Monte Carlo (DSMC) model for Enceladus jets and apply it to the analysis of the full set of UVIS occultation observations conducted during Cassini's mission from 2005 to 2017. The Monte Carlo model tracks test particles from their source at the surface into space. The initial positions of all test particles for a single jet are fixed to one of 100 jets sources identified by Porco et al. (2014). The initial three-dimensional velocity of each particle contains two components: a velocity Vz which is perpendicular to the surface, and a thermal velocity which is isotropic in the upward hemisphere. The direction and speed of the thermal velocity of each particle is chosen randomly but the ensemble moves isotropically at a speed which satisfies a Boltzmann distribution for a given temperature Tth. A range for reasonable Vz is then determined by requiring that modeled jet widths match the observed ones. Each model run results in a set of coordinates and velocities of a given set of test particles. These are converted to the test particle number densities and then integrated along LoS for each time step of the occultation observation. The geometry of the observation is calculated using SPICE. The overarching result of the simulation run is a test particle number density along LoS for each time point during the occultation observation for each of the jets separately. To fit the model to the data, we integrate all jets that are crossed by the LoS at each point during an observation. The relative strength of the jets must be determined to fit the observed UVIS curves. The results of the fits are sets of active jets for each occultation. Each UVIS occultation observation was done under a unique observational geometry. Consequently, the model fits produce different sets of active jets and different minimum Vz. We discuss and compare the results of fitting all UVIS occultation observations.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.P51F..07P
- Keywords:
-
- 4850 Marine organic chemistry;
- OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL;
- 5215 Origin of life;
- PLANETARY SCIENCES: ASTROBIOLOGY;
- 6282 Enceladus;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS;
- 8450 Planetary volcanism;
- VOLCANOLOGY