Burning transformations: Fire history effects on organic matter processing from hillslopes to streams
Abstract
Disturbance strongly regulates material and energy flows, changing ecosystem pattern and process. An increase in the size and severity of fire, particularly in the Intermountain West, over the last several decades is expected to continue due to a warming climate. Predicting how fire will alter the net ecosystem carbon balance requires us to understand how carbon is stored, processed, and transferred. Here we present results from paired watersheds focused on five 2002 severe fires in Colorado to examine how organic matter is processed along the hillslope and within the stream. Comparing soil samples and water extractable organic matter (WEOM) between burned and unburned sites illustrates the impact of fire: burned soils have 50% organic matter (OM) content as unburned soils, regardless of geomorphic position. While a smaller pool, soil OM (SOM) in burned sites is more susceptible to microbial degradation (p<0.001 for 4 of 6 sites), especially in systems with slower vegetative recovery. This is explained, in part, to the water extractable organic matter (WEOM) from unburned soils having a higher C:N than burned sites (p<0.02). This shift in SOM quality is likely due to differing OM inputs (e.g. grasses and forbes vs. trees in burned vs. unburned sites). Comparing results from intact soil column experiments to soil extractions and stream samples, suggests that the majority of this soil derived WEOM does not make it to the stream, potentially getting sorbed deeper in the mineral rich, organic poor, portion of the soil. Interestingly, the systematic shifts in OM amounts and quality (as measured by SUVA, E2:E3, and fluorescence) within the terrestrial system in response to fire, are not seen in stream exports. As such, while there are significant relationships (p<0.05) between stream DOM quality, DOM bioavailability, and stream metabolism, burned watersheds are not exporting DOM that is more bioavailable. In addition, despite different terrestrial OM pools, burned and unburned watersheds export statistically similar amounts of DOM per unit area, suggesting that a larger fraction of OM is transferred from the terrestrial to aquatic ecosystem within fire affected landscapes.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B44D..02B
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 0426 Biosphere/atmosphere interactions;
- BIOGEOSCIENCES;
- 0428 Carbon cycling;
- BIOGEOSCIENCES;
- 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCES