Model-data integration for developing the Cropland Carbon Monitoring System (CCMS)
Abstract
The Cropland Carbon Monitoring System (CCMS) has been initiated to improve regional estimates of carbon fluxes from croplands in the conterminous United States through integration of terrestrial ecosystem modeling, use of remote-sensing products and publically available datasets, and development of improved landscape and management databases. In order to develop these improved carbon flux estimates, experimental datasets are essential for evaluating the skill of estimates, characterizing the uncertainty of these estimates, characterizing parameter sensitivities, and calibrating specific modeling components. Experiments were sought that included flux tower measurement of CO2 fluxes under production of major agronomic crops. Currently data has been collected from 17 experiments comprising 117 site-years from 12 unique locations. Calibration of terrestrial ecosystem model parameters using available crop productivity and net ecosystem exchange (NEE) measurements resulted in improvements in RMSE of NEE predictions of between 3.78% to 7.67%, while improvements in RMSE for yield ranged from -1.85% to 14.79%. Model sensitivities were dominated by parameters related to leaf area index (LAI) and spring growth, demonstrating considerable capacity for model improvement through development and integration of remote-sensing products. Subsequent analyses will assess the impact of such integrated approaches on skill of cropland carbon flux estimates.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B31B1988J
- Keywords:
-
- 0426 Biosphere/atmosphere interactions;
- BIOGEOSCIENCES;
- 0428 Carbon cycling;
- BIOGEOSCIENCES;
- 0480 Remote sensing;
- BIOGEOSCIENCES;
- 0485 Science policy;
- BIOGEOSCIENCES