Radio Occultation Measurements of Pluto's Atmosphere with New Horizons
Abstract
The reconnaissance of the Pluto System by New Horizons in July 2015 included a radio occultation at Pluto. The observation was performed with signals transmitted simultaneously by four antennas of the NASA Deep Space Network, two at the Goldstone complex in California and two at the Canberra complex in Australia. Each antenna radiated 20 kW without modulation at a wavelength of 4.17 cm. New Horizons received the four signals with its 2.1-m high-gain antenna, where the signals were split into pairs and processed independently by two identical REX radio science instruments. Each REX relied on a different ultra-stable oscillator as its frequency reference. The signals were digitized and filtered, and the data samples were stored on the spacecraft for later transmission to Earth. Six months elapsed before all data had arrived on the ground, and the results reported here are the first to utilize the complete set of observations. Pluto's tenuous atmosphere is a significant challenge for radio occultation sounding, which led us to develop a specialized method of analysis. We began by calibrating each signal to remove effects not associated with Pluto's atmosphere, including the diffraction pattern from Pluto's surface. We reduced the noise and increased our sensitivity to the atmosphere by averaging the results from the four signals, while using other combinations of the signals to characterize the noise. We then retrieved profiles of number density, pressure, and temperature from the averaged phase profiles at both occultation entry and exit. Finally, we used a combination of analytical methods and Monte Carlo simulations to determine the accuracy of the measurements. The REX profiles provide the first direct measure of the surface pressure and temperature structure in Pluto's lower atmosphere. There are significant differences between the structure at entry (193.5°E, 17.0°S, sunset) and exit (15.7°E, 15.1°N, sunrise), which arise from spatial variations in surface composition coupled with the diurnal cycle of condensation and sublimation of nitrogen. This work is supported by the NASA New Horizons Mission.
- Publication:
-
AAS/Division for Planetary Sciences Meeting Abstracts #48
- Pub Date:
- October 2016
- Bibcode:
- 2016DPS....4822403H