Corrugations on the S Reflector West of Spain: Kinematic Implications
Abstract
The west Galicia margin (western Spain) provides favourable conditions to study the processes of continental extension and break-up through seismic imaging. Beneath the tilted fault blocks of the margin is a bright reflection, the S reflector, which is interpreted to be a detachment and the crust-mantle boundary. However questions remain concerning the role of the S during extension and in the mechanisms of breakup. To better understand the role of the S in continental breakup, a 3D multi-channel seismic dataset was acquired over the Galicia margin in summer 2013. It has been processed through to prestack time migration in collaboration with Repsol followed by depth conversion using velocities extracted from new velocity models based on wide-angle data across the Galicia margin and applied to a structural interpretation of the fault block structure. The faults that bound the present-day tilted blocks detach downward onto the S, suggesting that the S is a rooted detachment surface that formed late in the rifting history of the Galicia margin. The fact that the syn-tectonic sediments related to the block bounding faults represent only the latest part of the syn-rift units also supports a late development of the S detachment. The map of the S reveals a series of linear and parallel low ridges and troughs, also evident on the amplitude map of S, that are neither velocity distortions nor artefacts. We interpret these as slip surface "corrugations" and relate them to the slip direction during the rifting. The orientation of the corrugations changes oceanward, from E-W to ESE-WNW. It either suggests that slip on S was diachronous and that the extension direction changed as it migrated oceanward, or that the extension can be described as a clockwise rotation of the COT about a pole located 80km north of the 3D volume, just west of the northern Galicia Bank. There the edges of the Galicia Bank and the Galicia Escarpment appear in the bathymetry as a "V" shape opening to the south, which is reliable to a rotation of the area. Such a rotation is also consistent with the southward increasing internal deformation of some of the basement blocks along the margin. In either case it reveals the 3D complexity of the extension processes leading to breakup.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.T41E3005L
- Keywords:
-
- 8109 Continental tectonics: extensional;
- TECTONOPHYSICSDE: 8120 Dynamics of lithosphere and mantle: general;
- TECTONOPHYSICSDE: 8169 Sedimentary basin processes;
- TECTONOPHYSICSDE: 8178 Tectonics and magmatism;
- TECTONOPHYSICS