Near Real-Time Monitoring of Global Evapotranspiration and its Application to Water Resource Management
Abstract
Water scarcity and its impact on agriculture is a pressing world concern. At the heart of this crisis is the balance of water exchange between the land and the atmosphere. The ability to monitor evapotranspiration provides a solution by enabling sustainable irrigation practices. The Priestley-Taylor Jet Propulsion Laboratory model of evapotranspiration has been implemented to meet this need as a daily MODIS product with 1 to 5 km resolution. An automated data pipeline for this model implementation provides daily data with global coverage and near real-time latency using the Geospatial Data Abstraction Library. An interactive map providing on-demand statistical analysis enables water resource managers to monitor rates of water loss. To demonstrate the application of remotely-sensed evapotranspiration to water resource management, a partnership has been arranged with the New Mexico Office of the State Engineer (NMOSE). The online water research management tool was developed to meet the specifications of NMOSE using the Leaflet, GeoServer, and Django frameworks. NMOSE will utilize this tool to monitor drought and fire risk and manage irrigation. Through this test-case, it is hoped that real-time, user-friendly remote sensing tools will be adopted globally to make resource management decisions informed by the NASA Earth Observation System.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.H54D..01H
- Keywords:
-
- 3305 Climate change and variability;
- ATMOSPHERIC PROCESSESDE: 1655 Water cycles;
- GLOBAL CHANGEDE: 1855 Remote sensing;
- HYDROLOGYDE: 4313 Extreme events;
- NATURAL HAZARDS