Galaxy pairs in the Sloan Digital Sky Survey - XII. The fuelling mechanism of low-excitation radio-loud AGN.
Abstract
We investigate whether the fuelling of low-excitation radio galaxies (LERGs) is linked to major galaxy interactions. Our study utilizes a sample of 10 800 spectroscopic galaxy pairs and 97 post-mergers selected from the Sloan Digital Sky Survey with matches to multiwavelength data sets. The LERG fraction amongst interacting galaxies is a factor of 3.5 higher than that of a control sample matched in local galaxy density, redshift and stellar mass. However, the LERG excess in pairs does not depend on projected separation and remains elevated out to at least 500 h_{70}^{-1} kpc, suggesting that major mergers are not their main fuelling channel. In order to identify the primary fuelling mechanism of LERGs, we compile samples of control galaxies that are matched in various host galaxy and environmental properties. The LERG excess is reduced, but not completely removed, when halo mass or D4000 are included in the matching parameters. However, when both Mhalo and D4000 are matched, there is no LERG excess and the 1.4 GHz luminosities (which trace jet mechanical power) are consistent between the pairs and control. In contrast, the excess of optical and mid-IR selected active galactic nuclei (AGN) in galaxy pairs is unchanged when the additional matching parameters are implemented. Our results suggest that whilst major interactions may trigger optically and mid-IR selected AGN, the gas which fuels the LERGs has two secular origins: one associated with the large-scale environment, such as accretion from the surrounding medium or minor mergers, plus an internal stellar mechanism, such as winds from evolved stars.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- July 2015
- DOI:
- 10.1093/mnrasl/slv061
- arXiv:
- arXiv:1504.06255
- Bibcode:
- 2015MNRAS.451L..35E
- Keywords:
-
- galaxies: active;
- galaxies: interactions;
- galaxies: Seyfert;
- radio continuum: galaxies;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- Accepted for publication in MNRAS Letters