The Planetary System to KIC 11442793: A Compact Analogue to the Solar System
Abstract
Since exoplanets were first recognized, interpretations have concentrated on dynamics, since the most precise data come from radial velocity (RV) measurements. It is, recently, transit observations, obtained from space (CoRoT and Kepler) that have begun to acquire planetary radii with good precision. Mated to the RV data one can determine the average density of exoplanets and do planetology. We announce the discovery of a planetary system with 7 transiting planets around a Kepler target, a current record for transiting systems. Planets b, c, e and f are reported for the first time by our team (ApJ, accepted) Planets d, g and h were previously reported in the literature, although here we revise their orbital parameters and validate their planetary nature. Planets h and g are gas giants and show strong dynamical interactions. The orbit of planet g is perturbed in such way that its orbital period changes by 25.7h between two consecutive transits during the length of the observations, which is the largest such perturbation found so far. The rest of the planets also show mutual interactions: planets d, e and f are super-Earths close to a mean motion resonance chain (2:3:4), and planets b and c, with sizes below 2 Earth radii, are within 0.5% of the 4:5 mean motion resonance. This complex system presents some similarities to our Solar System, with small planets in inner orbits and gas giants in outer orbits. It is, however, more compact. The outer planet has an orbital distance around 1 AU, and the relative position of the gas giants is opposite to that of Jupiter and Saturn, which is closer to the expected result of planet formation theories. The dynamical interactions between planets are also much richer.
- Publication:
-
American Astronomical Society Meeting Abstracts #223
- Pub Date:
- January 2014
- Bibcode:
- 2014AAS...22334822F