Two-Dimensional Hybrid Models of Inhomogeneous Expanding Solar Wind Plasma Heating by Turbulent Wave Spectrum
Abstract
Remote sensing observations of solar wind plasma show that heavy ions are hotter than protons and that their temperature is anisotropic. In-situ observations of fast solar wind streams at distances of 0.29 AU and beyond by Helios and recently at ~1 AU by STEREO, ACE, and Wind spacecraft provide direct evidence for the presence of turbulent Alfven wave spectrum and of left-hand polarized ion-cyclotron waves in the coronal plasma. The latter can produce temperature anisotropies by resonant absorption and perpendicular heating of the ions. Furthermore, measurements indicate that Ti,⊥>>Ti,‖, contrary to what is expected in purely adiabatic expansion of the solar wind plasma, which predicts the opposite effect due to conservation of magnetic moment of the expanding ions. Future Solar Probe+ mission will provide in-situ observations of solar wind plasma close to the Sun where it is expected to be inhomogeneous on small scales. Here, we study the heating and the acceleration of solar wind ions (H+, He++) in inhomogeneous plasma with a turbulent spectrum of Alfvénic fluctuations using 2.5D hybrid code. The 2-D model allows us to explore inhomogeneities in the plasma and obliquely propagating waves. We extend previous work (Ofman 2010; Ofman et al. 2011) by including the expansion of the solar wind and study its effect on the perpendicular ion heating and cooling, and on the spectrum of the magnetic fluctuations in the inhomogeneous background wind. We also study the effects of inhomogeneous drift on the heating of the ions. We compare our results to the available observations.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMSH33A2064O
- Keywords:
-
- 7509 SOLAR PHYSICS;
- ASTROPHYSICS;
- AND ASTRONOMY Corona;
- 7500 SOLAR PHYSICS;
- ASTROPHYSICS;
- AND ASTRONOMY