Scientific Workflows + Provenance = Better (Meta-)Data Management
Abstract
The origin and processing history of an artifact is known as its provenance. Data provenance is an important form of metadata that explains how a particular data product came about, e.g., how and when it was derived in a computational process, which parameter settings and input data were used, etc. Provenance information provides transparency and helps to explain and interpret data products. Other common uses and applications of provenance include quality control, data curation, result debugging, and more generally, 'reproducible science'. Scientific workflow systems (e.g. Kepler, Taverna, VisTrails, and others) provide controlled environments for developing computational pipelines with built-in provenance support. Workflow results can then be explained in terms of workflow steps, parameter settings, input data, etc. using provenance that is automatically captured by the system. Scientific workflows themselves provide a user-friendly abstraction of the computational process and are thus a form of ('prospective') provenance in their own right. The full potential of provenance information is realized when combining workflow-level information (prospective provenance) with trace-level information (retrospective provenance). To this end, the DataONE Provenance Working Group (ProvWG) has developed an extension of the W3C PROV standard, called D-PROV. Whereas PROV provides a 'least common denominator' for exchanging and integrating provenance information, D-PROV adds new 'observables' that described workflow-level information (e.g., the functional steps in a pipeline), as well as workflow-specific trace-level information ( timestamps for each workflow step executed, the inputs and outputs used, etc.) Using examples, we will demonstrate how the combination of prospective and retrospective provenance provides added value in managing scientific data. The DataONE ProvWG is also developing tools based on D-PROV that allow scientists to get more mileage from provenance metadata. DataONE is a federation of member nodes that store data and metadata for discovery and access. By enriching metadata with provenance information, search and reuse of data is enhanced, and the 'social life' of data (being the product of many workflow runs, different people, etc.) is revealed. We are currently prototyping a provenance repository (PBase) to demonstrate what can be achieved with advanced provenance queries. The ProvExplorer and ProPub tools support advanced ad-hoc querying and visualization of provenance as well as customized provenance publications (e.g., to address privacy issues, or to focus provenance to relevant details). In a parallel line of work, we are exploring ways to add provenance support to widely-used scripting platforms (e.g. R and Python) and then expose that information via D-PROV.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMED43E..07L
- Keywords:
-
- 1948 INFORMATICS Metadata: Provenance;
- 1908 INFORMATICS Cyberinfrastructure;
- 1998 INFORMATICS Workflow;
- 1976 INFORMATICS Software tools and services