Salton Seismic Imaging Project Line 5—the San Andreas Fault and Northern Coachella Valley Structure, Riverside County, California
Abstract
The Salton Seismic Imaging Project (SSIP) is a large-scale, active- and passive-source seismic project designed to image the San Andreas Fault (SAF) and the adjacent basins (Imperial and Coachella Valleys) in southern California. Here, we focus on SSIP Line 5, one of four 2-D NE-SW-oriented seismic profiles that were acquired across the Coachella Valley. The 38-km-long SSIP-Line-5 seismic profile extends from the Santa Rosa Ranges to the Little San Bernardino Mountains and crosses both strands of the SAF, the Mission Creek (MCF) and Banning (BF) strands, near Palm Desert. Data for Line 5 were generated from nine buried explosive sources (most spaced about 2 to 8 km apart) and were recorded on approximately 281 Texan seismographs (average spacing 138 m). First-arrival refractions were used to develop a refraction tomographic velocity image of the upper crust along the seismic profile. The seismic data were also stacked and migrated to develop low-fold reflection images of the crust. From the surface to about 8 km depth, P-wave velocities range from about 2 km/s to more than 7.5 km/s, with the lowest velocities within a well-defined (~2-km-deep, 15-km-wide) basin (< 4 km/s), and the highest velocities below the transition from the Coachella Valley to the Santa Rosa Ranges on the southwest and within the Little San Bernardino Mountains on the northeast. The MCF and BF strands of the SAF bound an approximately 2.5-km-wide horst-type structure on the northeastern side of the Coachella Valley, beneath which the upper crust is characterized by a pronounced low-velocity zone that extends to the bottom of the velocity image. Rocks within the low-velocity zone have significantly lower velocities than those to the northeast and the southwest at the same depths. Conversely, the velocities of rocks on both sides of the Coachella Valley are greater than 7 km/s at depths exceeding about 4 km. The relatively narrow zone of shallow high-velocity rocks between the surface traces of the MCF and BF strands is associated with a zone of uplifted strata. Along SSIP Line 5, we infer that the MCF and BF strands are steeply dipping and merge at about 2 km depth. We base our interpretation on a prominent basement low-velocity zone (fault zone) that is centered southwest of the MCF and BF strands and extends to at least 8 km depth.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.T51B2584R
- Keywords:
-
- 7205 SEISMOLOGY / Continental crust;
- 7230 SEISMOLOGY / Seismicity and tectonics;
- 8106 TECTONOPHYSICS / Continental margins: transform;
- 8111 TECTONOPHYSICS / Continental tectonics: strike-slip and transform