Hamburg 2K: Climate modeling and downscaling for Hamburg, Germany under a 2 K global warming scenario
Abstract
The European Union has established a 2 K warming of average annual global surface temperature above pre-industrial levels as a target to avoid disruptive climate change. The Hamburg 2K project seeks to model the climate of Hamburg, Germany subject to this target warming by the end of the 21st century. A general circulation model (ECHAM5) with a greenhouse gas scenario consistent with this target (E1) provides a source for dynamical and statistical-dynamical model downscaling at the regional scale, using the Regional Model (REMO), and at the mesoscale, using the Mesoscale Transport and fluid (Stream) Model (METRAS). Regional scale model estimates provide forcing for off-line modeling of the North Sea circulation with the Hamburg Shelf-Ocean Model (HAMSOM). This presentation concentrates on the urban climate component of the 2K scenario. The approach quantifies the projected change in both the meteorology and the urban development. The modeling strategy allows for a discrete diagnosis of each contribution. For the meteorology, the project identifies an urban climate change signal between the late 20th and late 21st centuries using a statistical-dynamical downscaling technique. Cluster analysis of multiple REMO realizations generates a series of archetypical synoptic conditions, a.k.a., weather types. The frequency change of these weather types between present and future climate yields a climate change signal. The potential for distinctively new weather types in the future climate is also investigated. Regional weather types provide the forcing for simulations with METRAS at 1 km resolution. These simulations provide further assessment of urban climate change at a scale more sensitive to the heterogeneous urban surface. Some initial METRAS modeling results will be presented here. For the urban development, the METRAS model simulations benefit from a detailed surface cover map including over 50 classes of natural and artificial surfaces tailored specifically for Hamburg. The simulations of future climate incorporate estimates of future surface cover. Evaluation of current municipal construction plans helps quantify trends in building density and change in unsealed surface cover. An off-line urban planning model tuned for the 2K scenario incorporates these plans into its parameterizations and assists in deriving a future surface cover map of Hamburg.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.A32D..08F
- Keywords:
-
- 3355 ATMOSPHERIC PROCESSES / Regional modeling