Nitrogen biogeochemistry in urban wetlands and bioretention systems: The evolving roles of urban stormwater management practices (Invited)
Abstract
Traditional stormwater management practices, designed and constructed to rapidly and efficiently route runoff away from established infrastructure, have resulted in the disruption of natural drainage patterns in urban landscapes. The modified in-stream flow incises urban streams and reduces regional groundwater recharge, thus altering hydrologic patterns and regimes in urban wetlands and riparian zones. Water table dynamics and in situ nitrogen cycling processes were quantified in 14 palustrine, forested wetlands and correlated with watershed-scale land cover metrics in urban northern New Jersey. Variability in nitrogen cycling process rates was, in some cases, explained by altered hydrological regimes. However, land cover and hydrologic characteristics did not always exhibit the predicted effects, as demonstrated by dry and/or flashy water tables in less developed watersheds and denitrification rates that did not always reflect hydrological conditions. Inorganic nitrogen inputs and outputs were characterized in throughfall and soil leachate in nine of the 14 wetlands. Atmospheric nitrogen deposition rates were higher in wetlands located in more impervious and densely populated urban sub-watersheds, but nitrate losses through leaching were generally low and did not correlate with landscape-level descriptors of urban intensity. Two wetlands did display net loss of nitrate, and the results of dual isotope analysis suggested the direct pass-through of atmospheric nitrate on four sampling dates in two sites; these findings point to decreased nitrate retention capacity in some urban wetlands. New stormwater management practices designed to mimic natural drainage patterns are currently being developed and implemented in existing urban watersheds and new developments. These practices, which include rain gardens, pervious pavement, and green roofs, are intended to reduce peak flows to urban streams and, in many cases, also provide water quality functions. Rain gardens in particular have a documented ability to remove heavy metals and phosphorus from urban stormwater runoff, but their coarse-textured, low organic matter content soils are less able to remove nitrate through denitrification. Research at the US Environmental Protection Agency explores the use of media carbon amendments and deep zones of saturation to facilitate denitrification by providing labile carbon and anoxic conditions in experimental rain garden mesocosms. Initial results highlight the importance of conducting bench-scale testing of bioretention media before installation in full-scale, working rain gardens, particularly when media characteristics have been modified to promote stressor removal. If these low impact development practices can increase groundwater recharge and reduce stream incision, natural hydrologic regimes may be restored to urban wetlands and riparian zones.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.B13E..02S
- Keywords:
-
- 0469 BIOGEOSCIENCES / Nitrogen cycling;
- 0493 BIOGEOSCIENCES / Urban systems;
- 0496 BIOGEOSCIENCES / Water quality