Invariance of Gromov-Witten theory under a simple flop
Abstract
Let X be a smooth complex projective manifold and psi : X → X a flopping contraction in the sense of minimal model theory, with psi : Z ≅ Pr → pt the restriction map to the extremal contraction. Assume that NZ/X ≅ OPr (-1)⊕(r +1). Then a simple Pr flop f : X → X' exists. We show that the generating functions of Gromov-Witten invariants with ancestors are invariant under a simple flop, for all genera.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 2008
- DOI:
- 10.48550/arXiv.0804.3816
- arXiv:
- arXiv:0804.3816
- Bibcode:
- 2008PhDT.........4I
- Keywords:
-
- Mathematics - Algebraic Geometry