Interpretations on the Geologic Setting of Yogyakarta Earthquakes 2006 (Central Java, Indonesia) Based on Integration of Aftershock Monitoring and Existing Geologic, Geophysical and Remote Sensing Data
Abstract
The unprecedented 26 May 2006 Yogyakarta earthquake (central Java, Indonesia) that took victims of 5,700 lives was generally accepted to have a depth of about 10 km and moment magnitude of 6.4. However, the definition of location of active fault is still under debate as the epicenter of mainshock was reported quite differently by several institutions. Many researchers believe that the Opak fault which is located at the eastern boundary of Yogyakarta low-land area (or Yogyakarta Basin) and the high-land region of Southern Mountains was the source of year 2006 earthquakes. However, our result of aftershocks observation suggests that the ruptured zone was not located along the Opak fault but from an unknown fault located about 10 km to the east from it and within the Southern Mountains domain. Unfortunately, surface geologic manifestations are scarce as this area is now largely covered by limestone. Therefore the suspected active fault system must be studied through interpretations of the subsurface geology and evaluation of the Cenozoic geo-history of the region utilizing existing geologic, geophysical and remote sensing data. This work suggests that the Yogyakarta Basin is a volcano-tectonic depression formed gradually since the early Tertiary period (Oligo-Miocene or older). Geological and geophysical evidence suggest that structural trends changed from the Oligocene NE-SW towards the Oligo-Miocene NNE-SSW and the Plio-Pleistocene NW-SE and E-W directions. The ruptured "X" fault during the Yogyakarta earthquakes 2006 is likely to be a NNE-SSW trending fault which is parallel to the Opak fault and both were firstly active in the Oligo-Miocene as sinistral strike-slip faults. However, while the Opak fault had changed into a normal faulting after the Pliocene, the evidence from Kali Ngalang and Kali Widoro suggests that the "X" fault system was still reactivated as a strike-slip one during the Plio-Pleistocene orogeny. As this new interpretation of active fault causes spatial discrepancy between locations of earthquakes epicenters and highly damaged regions, other geo-engineering factors must be considerably important in determining the final scale of seismic hazards. The most vulnerable areas for seismic hazards are those located nearest to the ruptured fault and are underlain by thick Quaternary unconsolidated deposits. In case of regions along the fault line, seismic hazards seem to reach more distance region, such as the case of Gantiwarno region, as the seismic waves can travel more easily along the fault line.
- Publication:
-
AGU Spring Meeting Abstracts
- Pub Date:
- May 2007
- Bibcode:
- 2007AGUSM.S31C..01S
- Keywords:
-
- 7215 Earthquake source observations (1240)