Fractional-exponent behavior of magnetization near Tc in Bi2Sr2CaCu2O8
Abstract
Using high-resolution torque magnetometry, we have investigated in detail how long-range phase coherence develops as the critical temperature Tc (88.7 K) is approached in optimally-doped Bi2Sr2CaCuO8+δ with field H||c. Three distinct regimes are observed. Above ∼92 K, |M| increases rapidly as T->Tc in step with the vortex Nernst signal. M is strictly linear in H in weak H, but shows strong curvature at large H (5-14 T). The curvature provides a determination of the correlation length ξsc which grows as a power law, viz. ξsc∼1/t^ν. In the second regime, 86 < T < 92 K, M becomes nonlinear in H, viz. M∼H^α(T), where the exponent α(T) decreases from 1 to 0. This interesting fractional-exponent behavior is highly unusual and fits poorly with conventional pictures of `fluctuating diamagnetism.' As previously known, M is virtually H independent below 2 Tesla at the ``crossing temperature'' Tcr = 86 K. Below Tcr, M is a function of H. We compare this behavior with predictions of the 3DXY and Kosterlitz-Thouless theory. Supported by funds from the U.S. National Science Foundation under grant DMR 0213706.
- Publication:
-
APS March Meeting Abstracts
- Pub Date:
- March 2005
- Bibcode:
- 2005APS..MARP13007L