Arsenic Flux Dependence of Island Nucleation in InAs(001) Epitaxial Growth
Abstract
In spite of years of research on the epitaxial growth of III-V semiconductor materials, very little is known about basic growth mechanisms. In particular, the effects of As flux on the growth of GaAs and InAs is hardly understood at all even though, for InAs, the effects are clearly noticeable in the regime of interest for device growth. We have investigated the initial stages of InAs(001) epitaxial growth by combining high resolution kinetic Monte Carlo simulations based on ab initio density functional theory and scanning tunneling microscopy. With increasing As pressure, we find that the island number density decreases, consistent with similar recent data for GaAs, but inconsistent with at least one theoretical argument [1] and much of conventional wisdom regarding group III adatom diffusion in the presence of As. We identify the relevant growth mechanisms that depend on the As pressure and find that a higher As deposition rate leads to a decrease in the In adatom density during growth due to a higher incorporation rate for In at island and step edges. This reduces island nucleation and leads to a lower island density. This same mechanism also explains previously observed As flux trends for the step flow transition temperature. [1] J. Tersoff, M.D. Johnson and B.G. Orr, Phys. Rev. Lett. 78, 282 (1997)
- Publication:
-
APS March Meeting Abstracts
- Pub Date:
- March 2001
- Bibcode:
- 2001APS..MARL12013G