Versatile maskless microscope projection photolithography system and its application in light-directed fabrication of DNA microarrays
Abstract
We present a maskless microscope projection lithography system (MPLS), in which photomasks have been replaced by a Digital Micromirror Device type spatial light modulator (DMD™, Texas Instruments). Employing video projector technology high resolution patterns, designed as bitmap images on the computer, are displayed using a micromirror array consisting of about 786 000 tiny individually addressable tilting mirrors. The DMD, which is located in the image plane of an infinity corrected microscope, is projected onto a substrate placed in the focal plane of the microscope objective. With a 5× [0.25 NA (numerical aperture)] Fluar microscope objective, a fivefold reduction of the image to a total size of 9mm2 and a minimum feature size of 3.5μm is achieved. The ultrahigh pressure lamp of a video projector is a cheap, durable, and powerful alternative to the mercury arc lamps commonly used in lithography applications. The MPLS may be employed in standard photolithography. We have successfully produced patterns in 40μm films of SU-8 photoresist, with an aspect ratio of about 1:10. Our system can be used in the visible range as well as in the near UV (with a light intensity of up to 76mW/cm2 around the 365nm Hg line). We developed an inexpensive and simple method to enable exact focusing and controlling of the image quality of the projected patterns. Our MPLS has originally been designed for the light-directed in situ synthesis of DNA microarrays. One requirement is a high UV intensity to keep the fabrication process reasonably short. Another demand is a sufficient contrast ratio over small distances (of about 5μm). This is necessary to achieve a high density of features (i.e., separated sites on the substrate at which different DNA sequences are synthesized in parallel fashion) while at the same time the number of stray light induced DNA sequence errors is kept reasonably small. We demonstrate the performance of the apparatus in light-directed DNA chip synthesis and discuss its advantages and limitations.
- Publication:
-
Review of Scientific Instruments
- Pub Date:
- June 2006
- DOI:
- arXiv:
- arXiv:q-bio/0608038
- Bibcode:
- 2006RScI...77f3711N
- Keywords:
-
- 87.80.-y;
- 87.14.Gg;
- 87.64.-t;
- 42.79.Bh;
- 42.79.Hp;
- 42.79.Wc;
- Biological techniques and instrumentation;
- biomedical engineering;
- DNA RNA;
- Spectroscopic and microscopic techniques in biophysics and medical physics;
- Lenses prisms and mirrors;
- Optical processors correlators and modulators;
- Optical coatings;
- Quantitative Biology - Quantitative Methods;
- Quantitative Biology - Biomolecules
- E-Print:
- 12 pages, 9 figures, journal article