Vibrational and stochastic resonances in two coupled overdamped anharmonic oscillators
Abstract
We study the overdamped version of two coupled anharmonic oscillators under the influence of both low- and high-frequency forces respectively and a Gaussian noise term added to one of the two state variables of the system. The dynamics of the system is first studied in the presence of both forces separately without noise. In the presence of only one of the forces, no resonance behaviour is observed, however, hysteresis happens there. Then the influence of the high-frequency force in the presence of a low-frequency, i.e. biharmonic forcing, is studied. Vibrational resonance is found to occur when the amplitude of the high-frequency force is varied. The resonance curve resembles a stochastic resonance-like curve. It is maximum at the value of g at which the orbit lies in one well during one half of the drive cycle of the low-frequency force and in the other for the remaining half cycle. Vibrational resonance is characterized using the response amplitude and mean residence time. We show the occurrence of stochastic resonance behaviour in the overdamped system by replacing the high-frequency force by Gaussian noise. Similarities and differences between both types of resonance are presented.
- Publication:
-
Physics Letters A
- Pub Date:
- December 2006
- DOI:
- arXiv:
- arXiv:nlin/0611023
- Bibcode:
- 2006PhLA..360..279G
- Keywords:
-
- 02.50.-r;
- 05.40.-a;
- 05.45.-a;
- Probability theory stochastic processes and statistics;
- Fluctuation phenomena random processes noise and Brownian motion;
- Nonlinear dynamics and chaos;
- Nonlinear Sciences - Chaotic Dynamics
- E-Print:
- 22 pages, 13 figures