Periodic orbit spectrum in terms of Ruelle-Pollicott resonances
Abstract
Fully chaotic Hamiltonian systems possess an infinite number of classical solutions which are periodic, e.g., a trajectory “p” returns to its initial conditions after some fixed time τp. Our aim is to investigate the spectrum {τ1,τ2,…} of periods of the periodic orbits. An explicit formula for the density ρ(τ)=∑pδ(τ-τp) is derived in terms of the eigenvalues of the classical evolution operator. The density is naturally decomposed into a smooth part plus an interferent sum over oscillatory terms. The frequencies of the oscillatory terms are given by the imaginary part of the complex eigenvalues (Ruelle-Pollicott resonances). For large periods, corrections to the well-known exponential growth of the smooth part of the density are obtained. An alternative formula for ρ(τ) in terms of the zeros and poles of the Ruelle ζ function is also discussed. The results are illustrated with the geodesic motion in billiards of constant negative curvature. Connections with the statistical properties of the corresponding quantum eigenvalues, random-matrix theory, and discrete maps are also considered. In particular, a random-matrix conjecture is proposed for the eigenvalues of the classical evolution operator of chaotic billiards.
- Publication:
-
Physical Review E
- Pub Date:
- February 2004
- DOI:
- arXiv:
- arXiv:nlin/0406042
- Bibcode:
- 2004PhRvE..69b6204L
- Keywords:
-
- 05.45.Mt;
- 03.65.Sq;
- Quantum chaos;
- semiclassical methods;
- Semiclassical theories and applications;
- Chaotic Dynamics
- E-Print:
- Phys. Rev. E 69 (2004) 026204