Contextual Random Boolean Networks
Abstract
We propose the use of Deterministic Generalized Asynchronous Random Boolean Networks [Gershenson, 2002] as models of contextual deterministic discrete dynamical systems. We show that changes in the context have drastic effects on the global properties of the same networks, namely the average number of attractors and the average percentage of states in attractors. We introduce the situation where we lack knowledge on the context as a more realistic model for contextual dynamical systems. We notice that this makes the network non-deterministic in a specific way, namely introducing a non-Kolmogorovian quantum-like structure for the modelling of the network [Aerts, 1986]. In this case, for example, a state of the network has the potentiality (probability) of collapsing into different attractors, depending on the specific form of lack of knowledge on the context.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2003
- DOI:
- 10.48550/arXiv.nlin/0303021
- arXiv:
- arXiv:nlin/0303021
- Bibcode:
- 2003nlin......3021G
- Keywords:
-
- Nonlinear Sciences - Adaptation and Self-Organizing Systems;
- Nonlinear Sciences - Cellular Automata and Lattice Gases;
- Condensed Matter - Disordered Systems and Neural Networks;
- Computer Science - Computational Complexity
- E-Print:
- 10 pages, 5 figures