On Inflation Rules for Mosseri-Sadoc Tilings
Abstract
We give the inflation rules for the decorated Mosseri-Sadoc tiles in the projection class of tilings ${\cal T}^{(MS)}$. Dehn invariants related to the stone inflation of the Mosseri-Sadoc tiles provide eigenvectors of the inflation matrix with eigenvalues equal to $\tau = \frac{1+\sqrt{5}}{2}$ and $-\tau^{-1}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 1999
- DOI:
- arXiv:
- arXiv:math-ph/9911005
- Bibcode:
- 1999math.ph..11005P
- Keywords:
-
- Mathematical Physics;
- Mathematics - Mathematical Physics;
- AMS: 52B45;
- 52C22;
- 05B45;
- 51M20
- E-Print:
- LaTeX file, 4(3) pages + 7 figures (FIG1.gif, FIG2.gif,... FIH7.gif) and a style file (icqproc.sty)