On \mu-scale invariant operators
Abstract
We introduce the concept of a \mu-scale invariant operator with respect to unitary transformation in a separable complex Hilbert space. We show that if a nonnegative densely defined symmetric operator is \mu-scale invariant for some \mu >0, then both the Friedrichs and the Krein-von Neumann extensions are also \mu-scale invariant.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2007
- DOI:
- 10.48550/arXiv.math-ph/0701060
- arXiv:
- arXiv:math-ph/0701060
- Bibcode:
- 2007math.ph...1060M
- Keywords:
-
- Mathematical Physics;
- Mathematics - Mathematical Physics;
- Mathematics - Spectral Theory;
- 47A63;
- 47B25;
- 47B65