Theta and Riemann xi function representations from harmonic oscillator eigensolutions
Abstract
From eigensolutions of the harmonic oscillator or Kepler Coulomb Hamiltonian we extend the functional equation for the Riemann zeta function and develop integral representations for the Riemann xi function that is the completed classical zeta function. A key result provides a basis for generalizing the important Riemann Siegel integral formula.
- Publication:
-
Physics Letters A
- Pub Date:
- March 2007
- DOI:
- arXiv:
- arXiv:math-ph/0612086
- Bibcode:
- 2007PhLA..362..352C
- Keywords:
-
- 02.30.Gp;
- 02.30.Uu;
- 02.30.-f;
- Special functions;
- Integral transforms;
- Function theory analysis;
- Mathematical Physics;
- Mathematics - Mathematical Physics;
- 33C05;
- 42C05;
- 44A15;
- 44A20
- E-Print:
- 15 pages, no figures, appears in Phys. Lett. A