On the Master-Equation Approach to Kinetic Theory: Linear and Nonlinear Fokker-Planck Equations
Abstract
We discuss the relationship between kinetic equations of the Fokker-Planck type (two linear and one non-linear) and the Kolmogorov (a.k.a. master) equations of certain N-body diffusion processes, in the context of Kac's "propagation of chaos" limit. The linear Fokker-Planck equations are well-known, but here they are derived as a limit N->infty of a simple linear diffusion equation on (3N-C)-dimensional N-velocity spheres of radius sqrt(N) (with C=1 or 4 depending on whether the system conserves energy only or energy and momentum). In this case, a spectral gap separating the zero eigenvalue from the positive spectrum of the Laplacian remains as N->infty,so that the exponential approach to equilibrium of the master evolution is passed on to the limiting Fokker-Planck evolution in R^3. The non-linear Fokker-Planck equation is known as Landau's equation in the plasma physics literature. Its N-particle master equation, originally introduced (in the 1950s) by Balescu and Prigogine (BP), is studied here on the (3N-4)-dimensional N-velocity sphere. It is shown that the BP master equation represents a superposition of diffusion processes on certain two-dimensional sub-manifolds of R^{3N} determined by the conservation laws for two-particle collisions. The initial value problem for the BP master equation is proved to be well-posed and its solutions are shown to decay exponentially fast to equilibrium. However, the first non-zero eigenvalue of the BP operator is shown to vanish in the limit N->infty. This indicates that the exponentially fast approach to equilibrium may not be passed from the finite-N master equation on to Landau's nonlinear kinetic equation.
- Publication:
-
Transport Theory and Statistical Physics
- Pub Date:
- August 2004
- DOI:
- arXiv:
- arXiv:math-ph/0401027
- Bibcode:
- 2004TTSP...33..379K
- Keywords:
-
- Mathematical Physics;
- Mathematics - Mathematical Physics
- E-Print:
- 20 pages